Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Rev Med Pharmacol Sci ; 27(17): 7935-7945, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37750622

RESUMO

OBJECTIVE: Spinal muscular atrophy (SMA) is common among various populations because the genetic makeup is monogamous due to consanguineous marriages. Two genes, i.e., survival motor neuron (SMN1) and neuronal apoptosis inhibitory protein (NAIP) are mapped to the SMA vicinity of chromosome 5q13. The main objective of the study was to develop a solitary advanced genetic tool for the diagnosis of SMA by using SMN1 gene exon 7 and NAIP gene exon 5. PATIENTS AND METHODS: This study involved SMA patients (n=84) belonging to different clinical features and socio-economic status. The identity of the intact NAIP gene is primarily based on the amplification of exon 5 only in those SMA patients that have a deletion of SMN1 gene exon 7. Healthy controls (n=84) were also included in this study. The mutational analysis was observed through the Sanger sequencing method, where chromatograms were observed by using Chromas version 2.6.0. RESULTS: This study showed a higher prevalence of SMA in females than in males. NAIP gene is considered a phenotype modifier as most SMA patients (94.90%) have SMN1 exon 7 deletion along with a deletion in exon 5 of the NAIP gene. Single nucleotide conversion C-T in exon 7 of SMN1 gene leads to its complete deletion. Mutated proteins encoded by SMN1 and NAIP genes also result in degeneration and muscle weakness in SMA patients. CONCLUSIONS: These SMA-associated gene deletions can be used as a molecular evaluation tool for pre- and postnatal diagnosis of SMA. This will be valuable when there is a need for precise and consistent results with a strong focus on quantification.


Assuntos
Atrofia Muscular Espinal , Proteína Inibidora de Apoptose Neuronal , Proteína 1 de Sobrevivência do Neurônio Motor , Feminino , Humanos , Masculino , Proteínas Mutadas de Ataxia Telangiectasia , Éxons , Debilidade Muscular , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Proteína Inibidora de Apoptose Neuronal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA